Analogy-preserving Semantic Embedding for Visual Object Categorization
نویسندگان
چکیده
In multi-class categorization tasks, knowledge about the classes’ semantic relationships can provide valuable information beyond the class labels themselves. However, existing techniques focus on preserving the semantic distances between classes (e.g., according to a given object taxonomy for visual recognition), limiting the influence to pairwise structures. We propose to model analogies that reflect the relationships between multiple pairs of classes simultaneously, in the form “p is to q, as r is to s”. We translate semantic analogies into higher-order geometric constraints called analogical parallelograms, and use them in a novel convex regularizer for a discriminatively learned label embedding. Furthermore, we show how to discover analogies from attribute-based class descriptions, and how to prioritize those likely to reduce inter-class confusion. Evaluating our Analogy-preserving Semantic Embedding (ASE) on two visual recognition datasets, we demonstrate clear improvements over existing approaches, both in terms of recognition accuracy and analogy completion.
منابع مشابه
Discriminative Object Categorization with External Semantic Knowledge
Visual object category recognition is one of the most challenging problems in computer vision. While effortless for humans, it is inherently difficult for machines because of the visual variations such as lighting, pose, clutter and occlusion. Even assuming that we can obtain perfect instance-level visual representations, the object category recognition problem still remains difficult for machi...
متن کاملDynamic Categorization of Semantics of Fashion Language: A Memetic Approach
Categories are not invariant. This paper attempts to explore the dynamic nature of semantic category, in particular, that of fashion language, based on the cognitive theory of Dawkins’ memetics, a new theory of cultural evolution. Semantic attributes of linguistic memes decrease or proliferate in replication and spreading, which involves a dynamic development of semantic category. More specific...
متن کاملنقص حافظه طبقهبندی معنایی در مولتیپل اسکلروزیس
Background: Many studies have shown that about 45-65% of multiple sclerosis (M.S) patients suffer from cognitive impairments. Semantic memory as one of the subcategories of cognition is quite important for effective communication. In the present study, category-semantic memory was studied in order to evaluate the semantic memory organization in normal individuals and MS patients. Methods: Nine...
متن کاملEnhancing Text Categorization with Semantic-enriched Representation and Training Data Augmentation
Objective: Acquiring and representing biomedical knowledge is an increasingly important component of contemporary bioinformatics. A critical step of the process is to identify and retrieve relevant documents among the vast volume of modern biomedical literature efficiently. In the real world, many information retrieval tasks are difficult because of high data dimensionality and the lack of anno...
متن کاملSimilarity Reasoning over Semantic Context–graphs
Similarity is a central cognitive mechanism for humans which enables a broad range of perceptual and abstraction processes, including recognizing and categorizing objects, drawing parallelism, and predicting outcomes. It has been studied computationally through models designed to replicate human judgment. The work presented in this dissertation leverages general purpose semantic networks to der...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013